STORMWATER MANAGEMENT REPORT FOR BLOCK 261, LOT 15.02 DENNIS TOWNSHIP CAPE MAY COUNTY, NJ

EDA #9826

Vincent C. Orlando

3.28.23

Date N.J.P.E. #32498

STORMWATER MANAGEMENT CALCULATIONS

Existing Conditions

The project site consists of an area of 1.28 Acres (0.648 Acre disturbance). The parcel consists of woodland conditions. The soil type for the project site is (DocBO) Downer Loamy Sand 0 to 5%

Drainage Design

The project site consists of One (1) watershed areas:

The Existing Watershed consists of woodland conditions. This watershed drains to the front of the property as a low point for the site. No discharge offsite occurs; therefore, the basin is designed to detain and infiltrate the entire 100-year storm event.

There is one (1) proposed small-scale infiltration stormwater basin within this watershed to mitigate stormwater runoff.

Post Development Design Storm Groundwater Recharge (See attached Groundwater Recharge Spreadsheet)

Total Storage Required: Total Storage Available:

3,613 CF 5,549 CF

Basin Schedule to 100 Year Elevation
Small-Scale infiltration Basin
3,680 CF (Elev. 15.50 – 16.54)

Meteorological Data
(New Jersey 24 Hour Rainfall Frequency Data - Dennis Township)

10-Year 100- Year 2-Year 3.32 Inches 5.17 Inches 8.92 Inches

Pre-Development Conditions - Existing Watershed - 19,561 SF

Tc (Pervious) = 13 1 Minutes:	Woodland – A Grass – A	Cover Type
	30 39	CN Value
	6,380 SF 13,181 SF	Area

1c (Pervious) = 13.1 Minutes;

0.00 CFS	0.00 CFS	100-YR
0.00 CFS	0.00 CFS	10-YR
0.00 CFS	0.00 CFS	2-YR
Peak Outflow	Peak Inflow	Design Storm
Pre-Develonment	Pre-Development	

Post-Development Conditions - Proposed Watershed - 19,561 SF

***************************************	Grass – A Impervious*	Cover Type	
***************************************	39 98	CN Value	
	5,521 SF 14,040 SF	Area	

^{*}For design purposes this includes asphalt, roof, concrete and the stone driveway. All 4 entities are designed with a 98 curve number.

Tc (Pervious) = 2.4 Minutes; Tc (Impervious) = 1.7 Minutes

2-YR 10-YR 100-YR	Design Storm
1.20 CFS 1.88 CFS 3.46 CFS	Pre-Development Peak Inflow
0.00 CFS 0.00 CFS 0.00 CFS	Pre-Development Peak Outflow
0.25 CFS 0.29 CFS 0.37 CFS	Exfiltration

Point of Discharge Analysis

Existing Watershed #1 vs Proposed Watershed #1 & #2

2-YR 10-YR 100-YR	Design Storm
0.00 CFS 0.00 CFS 0.00 CFS	Pre-Development Peak Flows Ext WS
0.00 CFS 0.00 CFS 0.00 CFS	Post-Development Peak Flows Prop W
0% 0%	SW t

The proposed stormwater storage facility has been designed to release the post-development peak flows for the 2-YR, 10-YR and 100-YR Design Storms below their respective pre-development peak flows. Due to no runoff coming off the site in existing conditions the basins have the volume to detain all 3 storms.

The proposed stormwater storage facilities have been designed to incorporate Green Infrastructure measures by capturing, filtering and infiltrating stormwater to help restore the natural water cycle. Specifically, the stormwater system incorporates grassland areas to provide a simple disconnection of flows and to infiltrate clean runoff close to the initial source.

All of the proposed watershed areas have been created to be less than the 2.50 acre maximum required for small scale structures.

The proposed stormwater system has been designed to meet the NJDEP Stormwater Management Rules. The Stormwater Management System has been designed to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff generated from the Water Quality Design Storm by 80% utilizing a treatment train of infiltration basins. All water quality storms have been designed to infiltrate into their respective basin (see tables below).

Small-Scale Infiltration Basin #1 - Storage Volumes

10,01	
16 54	100-Year Design Storm
15.97	10-Year Design Storm
15.74	2- Year Design Storm
15.66	Water Quality Design Storm
Elevation	*
5,549 CF	17.00
1,675 CF	
0 CF	15.50
Storage Volume	Elevation

NOAA Atlas 14, Volume 2, Version 3
Location name: Cape May Court House, New
Jersey, USA*
Latitude: 39.155', Longitude: -74.7668°
Elevation: 14.36 ft**
*source: ESRI Maps
" source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

PF tabular

PF_tabular | PF_graphical | Maps_&_aerials NOAA, National Weather Service, Silver Spring, Maryland

4	7	Avera	Average recurrence Interval (years)	ice Interval		years)	are money on the state of the s	
1 2	51	10	25	50	-	100	100 200	
0.348 0.404 (0.312-0.387) (0.363-0.447)	0,460	0.633 (0.477-0.591)	0.600	0.662		0.715		0.765
0.647 (0.580-0.716)		0.853 (0.783-0.945)	0.957	1.06	- 13		1.14	1.14 1.21
0.813 (0.729-0.900)		1.08 (0.965-1.20)	1.21	1.34	- II		1.44	1.44 1.53
	1.32	1.56	1.80 (1.60-2.00)	2.01	- `		2.20	2.20 2.38
	1.70 (1.52-1.88)	2.04	2.39	273	≊ ÷		3.03	3.03 3.34
1.45 1.72 (1.28-1.63) (1.52-1.93)	2.08 (1.84-2.34)	2.52 (2.22-2.83)	2.98 (2.63-3.36)	3.42 (3.00-3.86	<u>يا</u> ع	3.84	3.84	3.84 4.26
1.59 1.88 (1.41-1.80) (1.67-2.12)	2.29 (2.03-2.57)	2.77 (2.45-3.12)	3.31 (2.90-3.73)	3.82	Ĕ			4.31 (3.73-4.87)
1.96 2.32 (1.75-2.24) (2.07-2.63)	2.80 (2.49-3.18)	3.40 (3.01-3.86)	4.10 (3.60-4.64)	4.79 (4.17-5.42	<u> </u>		5.45 (4.72-8.19)	5.45 6.17 (4.72-8.19) (5.28-7.03)
2.36 2.78 (2.10-2.68) (2.48-3.15)	3.36 (3.00-3.81)	443	5.04	5.97 (5.21-6.7			6.91	6.91 7.96 (5.98-7.85) (6.78-9.07)
2.73 3.32 (2.47-3.03) (3.01-3.69)	4.31	(3.66-4.66)	(4.44-5.69)		3		(5.98-7.85)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.13 3.82 (2.83-3.49) (3.44-4.25)	(3.90-4.79)	(3.66-4.66) (8.47 (4.66-5.73)	(4.44-5.69) 6.48 (5.79-7.15)	7.63 (6.76-8.	39)		(5.98-7.85) 8.92 (7.85-9.80)	8.92 10.4 (7.85-9.80) (9.04-11.4)
3.30 4.01 (3.00-3.64) (3.66-4.42)	(3.90-4.79) 4.96 (4.47-5.51)	(3.86.4.66) 6.17 (4.68.5.73) 6.94 (5.34.6.59)	(4.44-5.89) 6.48 (5.79-7.15) 7.42 (6.63-8.20)	7.63 (6.76-8.3 8.72 (7.73-9.6	9 9 5		(5.98-7.85) 8.92 (7.85-9.80) 10.2 (8.95-11.2)	(7.85-9.80) (9.04-11.4) 10.2 11.8 (8.95-11.2) (10.3-13.0)
3.46 4.20 (3.18-3.78) (3.87-4.60)	(3.90-4.79) 4.96 (4.47-5.51) 5.19 (4.72-5.71)	(3.66-4.66) 6.17 (4.68-5.73) 6.94 (5.34-6.59) 6.19 (5.62-6.81)	(4.44-5.89) 6.48 (5.79-7.15) 7.42 (6.63-8.20) 7.70 (6.95-8.44)	7.63 (6.76-8.36 8.72 (7.73-9.63 9.01 (8.08-9.87			(5.98-7.85) 8.92 (7.85-9.80) 10.2 (8.95-11.2) 10.5 10.5 10.5	10.4 (7.85-9.80) (9.04-11.4) 10.2 (8.95-11.2) (10.3-13.0) 10.5 (9.32-11.5) (10.7-13.2)
4.01 4.84 (3.71-4.36) (4.47-5.26)	(3.90.4,79) 4.96 (4.47-5.51) 5.19 (4.72-5.71) 5.42 (4.97-5.91)	(3.86.4.66) 6.17 (4.88.5.73) 6.94 (5.34.8.59) 6.19 (5.82.6.81) 6.44 (5.80.7.03)	(4.44-5.89) 6.48 (5.78-7.15) 7.42 (6.63-8.20) 7.70 (6.93-8.44) 7.98 (7.27-8.69)	7.63 (6.76-8.39 8.72 (7.73-9.63) 9.01 (8.08-9.87) 9.31 (8.43-10.1)			(5.98-7.85) (7.85-9.80) (7.85-9.80) (8.95-11.2) (8.95-11.2) (9.82-11.5)	10.4 (7.85-9.60) (9.04-11.4) 10.2 (8.95-11.2) (10.3-13.0) 17.1 (9.32-11.5) (10.7-13.2) 10.8 (9.85-11.7) (11.1-13.5) 12.4
	(3.90-4.79) 4.96 (4.47-5.51) 5.19 (4.72-5.71) 5.42 (4.97-5.91) 6.13 (5.98-5.67)	(3,864.69) 6.17 (4,865.73) 5.94 (5,346.59) (5,24.8) (5,907.03) 7.23 (6,667.89)	(6.44-5.89) (5.79.7.15) (7.42 (6.63-8.20) (6.95-8.44) (7.27-8.69) 8.86 (8.10-9.59)	7.63 (6.76-8.39 8.72 (7.73-9.63 9.01 (8.08-9.87 9.31 (8.43-10.1 10.2			(5.88-7.85) (7.85-9.80) (7.85-9.80) (8.95-11.2) 10.8 (9.82-11.5) 11.8 (9.89-11.7)	(7.85-9.60) (9.04-11.4) 10.2 (11.8 10.2 (10.3-13.0) 10.5 (10.7-13.2) 10.8 (11.13.5) 11.8 (10.7-13.2) 11.8 (11.1-13.5) 11.8 (11.1-13.5) 11.8 (13.4-13.5)
4.50 5.40 (4.18-4.86) (5.02-5.84)	(3.90-4.79) 4.96 (4.47-5.51) 6.19 (4.72-5.71) (4.72-5.71) 6.13 (5.98-6.57) 6.73 (6.26-7.27)	(3,664.69) 6.17 (4,665.73) 6.94 (5,346.59) 6.19 (5,624.81) 7.23 (6,667.93) 7.23 (6,667.93)	(6.44-5.89) (6.48 (7.42 (6.63-8.20) (6.95-8.44) (7.27-8.69) 8.85 (8.10-9.59) 9.43 (8.70-10.2)	7.63 (6.76-8.39 8.72 (7.73-9.63 9.01 (8.08-9.87 10.2 10.2 (9.33-11.1			(5.98-7.85) (7.85-9.80) 10.2 (8.95-11.2) 40.5 (9.32-11.5) 10.8 (9.89-11.7) 11.8 (10.8-12.7) 12.2 (11.1-13.1)	(7.85-9.80) (9.04-11.4) 10.2 (11.8 10.2 (10.3-13.0) 10.5 (10.7-13.2) 10.8 (10.7-13.2) 10.8 (11.7-13.5) 11.8 (11.7-13.5) 11.8 (11.7-13.5) 12.2 (13.7-13.5) 12.2 (13.7-13.6)
	(3.90-4.79) 4.96 (4.47-5.51) 5.19 (4.72-5.71) 5.42 (4.87-5.91) 6.13 (5.88-5.67) 6.73 (6.26-7.27) 8.56 8.56	(3,66.4.62 (3,66.4.63) 6.17 (4,68.5.73) 6.94 (5,34.6.59) (5,62.5.81) 6.44 (5,90.7.03) 7.24 (5,90.7.03) 7.24 (7,26.8.45) 9.86 (9.24.10.5)	(4.44.5.69) 6.48 (5.79.7.15) 7.72 (6.63.8.20) 7.70 (6.95.8.44) 7.98 (7.27.8.69) 8.85 (8.10-9.59) 9.30 (8.70-10.2) 11.6 (110.8.12.3)	7.63 (675-8.3) 8.72 (7.73-9.6 9.01 (8.08-9.8) (8.43-10. 10.8 10.8 (9.83-11.1 10.8 (9.88-11.6 (12.0-13.8			(5.98-7.85) (7.85-9.80) 10.2 (8.95-11.2) 10.8 (9.32-11.5) 10.8 (9.89-11.7) 11.8 (10.8-12.7) 12.2 (11.1-13.1) 14.3 (13.3-15.3)	8.92 10.4 (7.85-880) (9.04-11.4) 10.2 11.8 (8.95-11.2) (10.3-13.0) 10.5 12.1 (9.32-11.5) (10.7-13.2) 10.8 12.4 (9.89-11.7) (11.1-13.5) 11.8 13.4 (10.8-12.7) (12.1-14.5) 12.2 13.7 (11.1-13.1) (12.5-14.8) 14.3 15.8 (13.3-15.3) (14.5-16.8)
	(3.90-4.79) 4.96 (4.47-5.51) 6.19 (4.72-5.71) 6.42 (4.497-5.91) 6.73 (5.26-7.27) 6.73 (6.26-7.27) 6.73 (6.26-7.27) 6.73 (6.26-7.27) 6.73 (6.26-7.27)	(3.86.7.6) 6.17 (4.86.5.73) 5.94 (5.34.6.59) (5.82.5.81) 6.44 (5.90.7.03) 7.23 (6.86.7.85) 7.84 (7.26.8.45) 9.24.10.5)	(4.44-5.69) (5.79-7.15) (6.63-8.20) (7.70 (6.95-8.44) (7.27-8.69) (8.10-9.59) (8.10-9.59) (9.43 (10.8-12.3) (13.8 (10.8-12.3)	7.63 (676.83 8.72 (7.73-9.6 9.31 16.08-9.8 9.31 10.2 (9.33-11, 10.8 (9.88-11, 10.8 (9.88-11, 10.8 (9.88-11, 10.13 16.3 (14.3-16,			(5.867.85) (7.85-9.80) (7.85-9.80) (8.95-11.2) (8.95-11.2) (8.95-11.2) (10.8-11.7) (11.8 (10.8-12.7) (11.1-13.1) (13.3-16.3) (16.7	8.92 (7.85-9.60) (9.04-11.4) 10.2 11.8 (8.95-11.2) (10.3-13.0) 10.6 10.3 10.7 10.7 10.7 10.7 10.8 10.7 11.1 10.8 11.8 11.4 11.8 11.4 11.8 11.4 11.8 11.4 11.8 11.8 11.1
	(3.90-4.79) 4.96 4.47-5.51) 5.42 (4.47-5.51) 5.42 (4.97-5.91) 6.13 (5.68-5.67) 6.73 (6.26-7.27) 8.66 8.11-9.22 10.6 (9.97-11.2) 13.1	(3,864,62 (3,864,62 6,17 (4,865,73) 6,94 (5,344,659) (5,824,81) (5,807,03) 7,24 (5,807,03) 7,24 (7,284,45) 9,86 (9,24-10,5) 11,9 11,2-12,7 14,8 (13,8-15,4)	(4,44-5.89) (5,78-7.15) (5,78-7.15) (6,95-8.44) (7,27-8.69) (8,10-8.59) (8,10-8.59) (8,10-8.59) (8,10-8.59) (8,70-10.2) (13,8 (10,8-12.3) (13,8 (12,9-13.4) (15,9-13.4)	7.63 (6.76-8, 72-73-9, 9.51 (8.06-9, 9.31 (8.43-11) 10.2 (9.33-11) 10.8 (9.88-11) 10.8 (9.88-11) 10.8 (9.88-11) 10.8 (9.88-11) 10.8	9 2 8 6 11		(5.98-7.85) (7.85-9.80) (7.85-9.80) (7.85-9.80) (9.82-11.2) (9.82-11.5) (10.8 (10.8-12.7) (12.2 (11.1-13.1) 14.3 (13.3-15.3) (15.6-17.7) (15.6-17.7)	8.92 10.4 (7.85-9.60) (9.04-11.4) 10.2 11.8 (8.95-11.2) (10.3-13.0) 10.5 12.1 (9.32-11.5) (10.7-13.2) 10.8 13.4 (10.8-12.7) (12.1-14.5) 11.2 13.7 (11.1-13.1) (12.5-14.8) 14.3 15.8 (13.3-15.3) (14.5-16.8) 19.4 20.8 (18.3-20.5) (19.6-22.0)
	(3.90-4.79) 4.96 4.96 (4.47-5.51) 6.13 (5.96-6.57) 6.73 (6.26-7.27) 6.856 (8.11-9.22) 13.1 13.1 (12.5-13.8)	3.864.69 6.17 (4.865.73) 6.94 5.346.59) 6.69 (5.824.81) 6.807.00) 7.23 (6.867.85) 7.24 (7.268.45) 9.86 (9.24-10.5) 14.8 (112-127) 14.8 (13.8-15.4) 16.9 (16.1-17.8)	(4,44-5.89) 6,48 (5,79-7.15) 7.70 (6,95-8.44) 7.98 (7,27-8.69) 8.85 (8,10-9.59) 9.43 (8,70-10.2) 11.6 (10.9-12.3) 16.5 (15.9-17.4) 18.9 (17.9-19.8)	7.63 (676.83 8.72 (7.73-9.6 9.01 (8.06-9.8 9.33-10, 10.2 (9.33-11, 10.8 (9.83-11, 12.9 (12.0-13, 16.3 (12.0-13,			(5.88-7.85) (7.85-9.80) (7.85-9.80) (8.95-11.2) (8.95-11.2) (8.95-11.2) (9.32-11.5) (10.8 (10.8 (17.7) (12.2) (11.1-13.1) (13.3-16.3) (13.3-16.3) (15.6-17.7) (15.6-17.7) (15.6-17.7)	8.92 10.4 (7.85-9.0) (9.04-11.4) 10.2 11.8 10.2 11.8 10.3-11.2) (10.3-13.0) 10.8 12.1 10.8 12.1 10.8-12.7) (11.1-13.5) 11.8 13.4 (10.8-12.7) (12.1-14.5) 12.2 13.7 12.2 13.7 12.3 15.8 (13.3-15.3) (14.8-16.8) 18.4 20.8 (18.3-20.5) (19.8-22.0) 21.7 23.0
4.50 5.40 184.86) (5.02-5.84) 6.01 7.15 6.56.41) (6.72-7.62) 7.50 8.89 07.7.95) (8.37-9.43) 9.49 11.2 01-10.0) (10.6-11.8) 11.3 13.3 0.7-11.9) (12.6-13.9) requency (PF) estimates in	(3.90-4.79) 4.96 4.96 (4.47-5.51) 5.19 (4.72-5.71) 5.13 (5.66-6.67) 6.73 (6.26-7.27) 6.866 (8.11-9.22) 11.1 13.1 15.4 115.4 115.4	(3.86.4.62 (3.86.4.62 6.17 (4.86.5.73) 6.94 (5.34.6.59) (5.82.6.81) (5.82.6.81) 7.23 (6.86.7.85) 7.34 (7.28.8.45) 9.86 (9.24.10.5) 14.8 (11.2-12.7) 14.8 (13.8-15.4) 18.9 (16.1-17.8)	(4,44-5.89) 6,48 (5,79-7.15) 7,70 (6,95-8,44) 7,98 (7,27-8,69) 8,85 (8,10-9,59) 9,43 (8,70-10,2) 11,6 (10-9,12,9) 13,8 (12-9,14,6) 16,5 (15,9-17,4) 18,9 (17,9-19,8)	7.63 (6.76.8.39) 8.72 (7.73.9.63) 9.31 (8.08.987) 9.34 (8.43.10.1) 10.2 (9.33.11.1) 10.8 (9.88.11.6) 12.9 (12.0-13.8) 12.9 (12.0-13.8) 18.0 (17.0-18.9) 20.3 (19.3-21.4)		(19.85-7.85) (19.892) (19.25-9.80) 10.2 (19.95-11.2) 10.8 (19.83-11.5) (19.812.7) 12.2 (11.1-13.1) 14.3 (13.3-15.3) 16.5-17.7) 19.5-17.7) 19.5-17.7) 19.5-17.7)		10.4 (9.04-11.4) 11.8 (10.3-13.0) 12.1 (10.7-13.2) 13.4 (11.1-13.5) 13.4 (12.1-14.5) 14.8 (14.6-16.8) 16.8 (14.6-16.8) 17.0-19.3 20.6 (19.6-22.0) 23.0 (21.7-24.2)
4.50 5.40 18.4.86) (5.02-5.84) 6.01 7.15 6.56.41) (6.72-7.62) 7.50 8.89 07-7.95) (8.37-9.43) 9.49 11.2 0.1-10.0) (10.6-11.8) 11.3 13.3 0.7-11.9) (12.6-13.9) requency (PF) estimates in anthesis are PF estimates and average recurrence into	(3.90-4.79) 4.96 4.96 (4.47-5.51) 5.19 (4.72-5.71) 6.13 (5.68-5.67) 6.73 (6.26-7.27) 6.73 (6.26-7.27) 6.13 (6.26-7.27)		3.864.69) 6.17 (4.665.73) 6.19 5.32-6.81) 6.44 5.90-7.03) 7.23 6.64-7.23 6.66-7.85) 7.86 7.86 7.86 7.11.9 11.9 11.2-12.7) 11.4.8 13.8-15.4) 18.9 16.117.8) 16.19 16.19 18.9 16.117.8)	6.17 4.68-5.73) 5.79-7.15) 6.94 6.594 6.594 6.595 6.19 7.70 6.19 7.23 8.85 8.63-7.85) 8.62-7.85) 8.62-7.85) 8.62-7.85) 8.10-9.59 8.63-7.85) 8.10-9.59 8.11.2-12.7) 11.3-12.8) 11.3-12.8) 11.3-13.8 11.3-15.4) 11.5-17.4) 18.9 16.1-17.8) 11.9 18.9 16.1-17.8) 17.9-19.8) 18.9 16.1-17.8) 17.9-19.8) 18.9 16.1-17.8)	6.17 6.48 (5.21-6.75) 6.18 7.63 7.63 4,88-5.73) (5.78-7.15) (6.78-39) 5,94 7.42 8.72 5,94-6.93 (6.58-8.20) (7.73-9.63) 6,19 7,70 9,01 5,82-8,81) (6.98-8.44) (8.08-9.87) 6,44 7,98 9,31 5,80-7,03) (7.27-8,69) (8.43-10,1) 7,23 8,85 10.2 6,84-7,03) (7.27-8,69) (9.33-11,1) 7,84 9,43 10.8 7,84 9,43 10.8 7,84 9,43 10.8 7,26-8,45) (8.70-10.2) (9.88-11.6) 9,24-10.5) (10.8-12.3) (12.0-13.9) 11.9 13.8 14.3 14.3-18.2) 11.4,6 12.9 14.3 11.2-12.7) 12.9-13.9) (13.8-17.4) (17.0-18.9) 13.8-17.4 11.2-12.7) (15.6-17.4) (17.0-18.9) 13.8-17.4 11.2-12.7) <td< td=""><td>24-hr 2.73 (2.47-3.03) 3.32 (3.07-3.69) 4.36 (3.94.79) (4.86-5.73) (4.86-5.73) (5.77-15) (5.78-3.39) 7.63 (8.92-3.89) 2-day 2.33 (2.85-3.49) 3.82 (3.44-2.51) 4.96 (4.47-5.51) 5.34-6.59) (5.34-6.59) (6.53-8.20) (6.53-8.20) 7.73-9.63) (7.73-9.63) (7.73-9.63) (8.95-11.2) 10.5 (9.95-11.2) 3-day 3.346 (3.16-3.78) 4.20 (3.16-3.78) 6.42 (4.47-5.51) 6.43 (5.82-8.81) 7.70 (8.93-11.7) 9.01 (9.32-11.5) 10.5 (9.32-11.5) 7-day 3.46 (3.16-3.78) 4.84 (3.16-3.78) 6.43 (4.47-5.28) 6.63 (4.47-5.91) (5.92-8.81) (8.08-9.87) (9.33-11.1) (9.32-11.5) (9.83-11.7) 10-day 4.50 (4.18-4.86) 6.63 (5.02-5.24) 6.67 (6.26-7.27) 7.84 (9.24-10.5) 9.43 (9.33-11.1) 10.8 (11.2-12.7) 20-day 6.01 (5.02-5.24) 6.26-7.27) 7.28-8.45 (8.11-9.23) (9.83-11.6) (10.8-12.7) (11.2-12.3) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7)</td><td>24-hr 2.733 3.33 4.31 (3.01-3.69)</td><td>10.4 (9.04-11.4) 11.8 (10.3-13.0) 12.1 (10.7-13.2) 13.4 (11.1-13.5) 13.7 (12.5-14.8) 14.8 (14.5-16.8) 18.2 (17.0-19.3) 18.2 (17.0-19.3) 19.6 (21.7-24.2)</td></td<>	24-hr 2.73 (2.47-3.03) 3.32 (3.07-3.69) 4.36 (3.94.79) (4.86-5.73) (4.86-5.73) (5.77-15) (5.78-3.39) 7.63 (8.92-3.89) 2-day 2.33 (2.85-3.49) 3.82 (3.44-2.51) 4.96 (4.47-5.51) 5.34-6.59) (5.34-6.59) (6.53-8.20) (6.53-8.20) 7.73-9.63) (7.73-9.63) (7.73-9.63) (8.95-11.2) 10.5 (9.95-11.2) 3-day 3.346 (3.16-3.78) 4.20 (3.16-3.78) 6.42 (4.47-5.51) 6.43 (5.82-8.81) 7.70 (8.93-11.7) 9.01 (9.32-11.5) 10.5 (9.32-11.5) 7-day 3.46 (3.16-3.78) 4.84 (3.16-3.78) 6.43 (4.47-5.28) 6.63 (4.47-5.91) (5.92-8.81) (8.08-9.87) (9.33-11.1) (9.32-11.5) (9.83-11.7) 10-day 4.50 (4.18-4.86) 6.63 (5.02-5.24) 6.67 (6.26-7.27) 7.84 (9.24-10.5) 9.43 (9.33-11.1) 10.8 (11.2-12.7) 20-day 6.01 (5.02-5.24) 6.26-7.27) 7.28-8.45 (8.11-9.23) (9.83-11.6) (10.8-12.7) (11.2-12.3) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.3) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7) (10.8-12.7)	24-hr 2.733 3.33 4.31 (3.01-3.69)	10.4 (9.04-11.4) 11.8 (10.3-13.0) 12.1 (10.7-13.2) 13.4 (11.1-13.5) 13.7 (12.5-14.8) 14.8 (14.5-16.8) 18.2 (17.0-19.3) 18.2 (17.0-19.3) 19.6 (21.7-24.2)

Back to Top

PF graphical

Duration

2-day
3-day
4-day
7-day
10-day
20-day
45-day
60-day

Precipitation Frequency Data Server

Average recurrence interval (years)

5 10 10 10 10 10 10 10 10 10

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=39.1550&lon=-74.7668&data=depth&units=english&series=pds

Large scale terrain

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Objections 2: HISC Clusters

Disclaimer

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=39.1550&lon=-74.7668&data=depth&units=english&series=pds

United States
Department of
Agriculture

Natural Resources Conservation Service

> Part 630 Hydrology National Engineering Handbook

Chapter 15

Time of Concentration

Part (30)

National Engineering Hundhook

ests, seem densities in meadows provide a high degree of retardance to overland flow in small watersheds. Contively low retardance factors. Like thick mulches in forwell as high infiltration rates. Hay meadows have relaflows are represented by high retardance factors. versely, bare surfaces with little retardance to overland dance factors and reflect high degrees of retardance, as Thick mulches in forests are associated with low retar-

than 95 should not be used in the solution of equations NEH 630.09 may be used to approximate cur in equa-Hydrologic Soil-Cover Complexes. In practical usage tions 15-4a and 15-4b. A CN of less than 50, or greater CN is used as a surrogate for cn', and the CN tables in the curve number (CN) as defined in NEH630.09, The retardance factor is approximately the same as 15-4a and 15-4b (Mockus 1961).

upper limit may be as much as 19 square miles. ditional watershed data and found that a reasonable revisited the development of this equation using adacres in size (Mockus 1961). Folmar and Miller (2000) the majority of the watersheds being less than 2,000 ranging in size from 1.3 acres to 9.2 square miles, with equation was developed using data from 24 watersheds Applications and limitations—The watershed lag

Velocity method

Table 15-1

along the hydranlically most digtant flow path. concentration is the sum of travel times for segments method. The velocity method assumes that time of normally used within the NRCS is called the velocity Another method for determining time of concentration

$$T_c = T_{11} + T_{12} + T_{13} + \dots T_{1n}$$
 (eq. 15-7)

where:

= time of concentration, h

= travel time of a segment n, h

= number of segments comprising the total hydraulic length

open channel flow. three types: sheet flow, shallow concentrated flow, and The segments used in the velocity method may be of

ters of a stream near the ridgeline that defines the surfaces. Sheet flow usually occurs in the headwa-Sheet flow-Sheet flow is defined as flow over plane

no more than 100 feet before transitioning to shallow watershed boundary. Typically, sheet flow occurs for concentrated flow (Merkel 2001).

ing the impact of various parameters on the estimates developed by Welle and Woodward (1986) after study tion may be used to compute travel time for sheet flow This simplified form of the kinematic equation was A simplified version of the Manning's kinematic solu-

$$T_{i} = \frac{0.007(n\ell)^{0.5}}{(P_{2})^{0.5}S^{0.4}}$$
 (eq. 15-8)

where:
T_i = tr

= travel time, h

2 = Manning's roughness coefficient (table 15-1)

= sheet flow length, ft

= 2-year, 24-hour rainfall, in

SOL = slope of land surface, ft/ft

Range (natural) ... Smooth surface (concrete, asphalt, gravel, or Childrated soils. Surface description Fallow (no residue).. Bernulagrass Short-grass prairie... Residue cover > 20% Dense grasses Residue cover 5 20% Light underbrush Manning's roughness coefficients for sheet flow (flow depth generally ≤ 0.1 ft) 10.00 0.05 0.40 0.13 0.4 0.2 10 110.0

- The Manning's is values are a composite of information compiled
- by Engineer (1086)

Dense underbrish ...

18.D

- 63 includes species such as weaping lavegrass, this grass, buttino
- is the only purply grows, and major grows prixtures. When selecting it, coughler cover this which observe the first cover this will observe shoet flow is the only purply free plant cover this will observe shoet flow.

CHUE ABY TENNIN-LA-MED

7

This simplification is based on the following assumptions:

- shallow steady uniform flow
- constant rainfall excess intensity (that part of a rain available for runoff) both temporally and spatially
- 2-year, 24-hour rainfall assuming standard NRCS rainfall intensity-duration relations apply (Types I, II, and III)
- · minor effect of infiltration on travel time

For sheet flow, the roughness coefficient includes the effects of roughness and the effects of raindrop impact including drag over the surface; obstacles such as litter, crop ridges, and rocks; and erosion and transport of sediment. These *n* values are only applicable for flow depths of approximately 0.1 foot or less, where sheet flow occurs. Table 15–1 gives roughness coefficient values for sheet flow for various surface conditions.

Kibler and Aron (1982) and others indicated the maximum sheet, flow length is less than 100 feet. To support the sheet flow limit of 100 feet, Merkel (2001) reviewed a number of technical papers on sheet flow. McCuen and Spiess (1995) indicated that use of flow length as the limiting variable in the equation 15–8 could lead to less accurate designs, and proposed that the limitation should instead be based on:

Table 15-2 Maximum sheet flow lengths using the McCuen-Spiess limitation orderion

Cover type	a values	Slape (ft/ft)	Length (ft)
Range	0.25	10,01	-:1
Chara	0.4	10.0	24
Wasts	0,80	0.01	(5) (5)
Hillige	0.63	0.65	172
HEN AT	0.11	0.05	8
Winite	D.Mg	9,95	25

where

- = Manning's roughness coefficient
- E = limiting length of flow, ft
- S = slope, ft/ft

Table 15–2 provides maximum sheet flow lengths based on the McCuen-Spiess limiting criteria for various cover type—n value—slope combinations.

Shallow concentrated flow—After approximately 100 feet, sheet flow usually becomes shallow concentrated flow collecting in swales, small rills, and guilles. Shallow concentrated flow is assumed not to have a well-defined channel and has flow depths of 0.1 to 0.5 feet. It is assumed that shallow concentrated flow can be represented by one of seven flow types. The curves in figure 15-4 were used to develop the information in table 15-3.

To estimate shallow concentrated flow travel time, velocities are developed using figure 15–4, in which average velocity is a function of watercourse slope and type of channel (Kent 1964). For slopes less than 0.005 foot per foot, the equations in table 15–3 may be used.

After estimating average velocity using figure 15-4, use equation 15-1 to estimate travel time for the shallow concentrated flow segment.

Open channel flow—Shallow concentrated flow is assumed to occur after sheet flow ends at shallow depths of 0.1 to 0.5 feet. Beyond that channel flow is assumed to occur. Open channels are assumed to begin where surveyed cross-sectional information has been obtained, where channels are visible on aerial photographs, or where bluelines (indicating streams) appear on U.S. Geological Survey (USGS) quadrangle sheets.

Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for the bankfull elevation.

Manning's equation is:

(411-Y-NEIL May 2111)

PRE-DEVELOPMENT RUNOFF

Ext. Drainage Area

Routing Diagram for Rt 83 Storage Keith
Prepared by Engineering Design Associates, Printed 3/30/2023
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Printed 3/30/2023 Page 2

				1
4	ယ	2	_	Event#
WQ	100 Year Storm	10 Year Storm	2 Year Storm	Event Name
NJ DEP 2-hr	NOAA 24-hr	NOAA 24-hr	NOAA 24-hr	Storm Type
	ဂ	ဂ	C	Curve
Default	Default	Default	Default	Mode
2.00	24.00	24.00	24.00	Duration (hours)
<u></u>	_	_	_	B/B
1.25	8.92	5.17	3.32	Depth (inches)
2	2	2	2	AMC

Area Listing (selected nodes)

Printed 3/30/2023 Page 3

19,561	6,380	13,181	(sq-ft)	Area
36	30	39		S
TOTAL AREA	Woods, Good, HSG A (E DA)	>75% Grass cover, Good, HSG A (E DA)	(subcatchment-numbers)	Description

Printed 3/30/2023 Page 4

Soil Listing (selected nodes)

19,561	0	0	0	0	19,561	(sq-ft)	Area
	Other	HSG D	HSG C	HSG B	HSG A	Group	Soil
TOTAL AREA					E DA	Numbers	Subcatchment

Rt 83 Storage Keith

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

Summary for Subcatchment E DA: Ext. Drainage Area

II 0.00 cfs @ 24.04 hrs, Volume=

Runoff

3 cf, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2 Year Storm Rainfall=3.32"

	1		L				1		
13.1	.သ .ထ	9.3	(min)	C T					D
13.1 191 Total	165	26	(feet)	Length	19,561	19,561	13,181	6,380	Area (sf)
Total	0.0105	26 0.0105	(ft/ft)	Slope			39	30	S
	0.72	0.05	,	Velocity	100.00% Pervious Area	Weighted Average	>75% Grass cover, Good, HSG A	Woods, Good, HSG A	Description
			(cfs)	Capacity	ervious Area	verage	s cover, Go	od, HSG A	
	Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	Sheet Flow,	-	Description	W		od, HSG A		

Subcatchment E DA: Ext. Drainage Area

NOAA 24-hr C 10 Year Storm Rainfall=5.17" Printed 3/30/2023

Page 6

Summary for Subcatchment E DA: Ext. Drainage Area

Runoff

0.01 cfs @

13.00 hrs, Volume=

265 cf, Depth= 0.16"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10 Year Storm Rainfall=5.17"

	I		L				l		1
13.1	 	93	min)	7					>
191 Total	165	26	(feet)	Length	19,561	19,561	13,181	6,380	Area (sf)
Total	165 0.0105	26 0.0105	(ft/ft)	Slope	_	<	39 >	30 V	CN
	0.72	0.05		Velocity	00.00% Pe	Weighted Average	75% Grass	Voods, Go	CN Description
			(cfs)	Capacity	100.00% Pervious Area	verage	s cover, Go	Woods, Good, HSG A	
	Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	Shoot Flour	-	Capacity Description	ä		>75% Grass cover, Good, HSG A		

Subcatchment E DA: Ext. Drainage Area

NOAA 24-hr C 100 Year Storm Rainfall=8.92" Printed 3/30/2023

Summary for Subcatchment E DA: Ext. Drainage Area

Runoff

П

0.27 cfs @

12.32 hrs, Volume=

2,068 cf, Depth= 1.27"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100 Year Storm Rainfall=8.92"

	1		L				ı		1
13.1	ယ	9.3	min)	ਨ					>
191 Total	165	26	(feet)	Length	19,561	19,561	13,181	6,380	Area (sf)
Total	165 0.0105	26 0.0105	(ft/ft)	Slope	_	<	39 V	30 V	CN
	0.72	0.05	(ft/sec)	Velocity	100.00% Pervious Area	Weighted Average	75% Grass	Woods, Good, HSG A	CN Description
				Capacity	ervious Are	verage	s cover, Go	od, HSG A	
	Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	Sheet Flow.	•	Description	٥		39 >75% Grass cover, Good, HSG A		
	2= 3.31"			400					

Subcatchment E DA: Ext. Drainage Area

NJ DEP 2-hr WQ Rainfall=1.25" Printed 3/30/2023

Summary for Subcatchment E DA: Ext. Drainage Area

[45] Hint: Runoff=Zero

11 0.00 cfs @ 0.00 hrs, Volume=

Runoff

0 cf, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NJ DEP 2-hr WQ Rainfall=1.25"

13.1	3. 8	9.3	(min	7			
191 Total			(feet)	c Length	19,561 19,561	6,380 13,181	Area (sf)
Total	165 0.0105	26 0.0105	(ft/ft)	Slope		အ အ	CN
	0.72	0.05	(ft/sec)	Velocity	Weighted Average 100.00% Pervious Area	Woods, Good, HSG A >75% Grass cover, Go	Description
			(cfs)	Capacity	werage ervious Are	od, HSG A s cover, Go	
	Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	Sheet Flow,	-	Capacity Description	۵	Woods, Good, HSG A >75% Grass cover, Good, HSG A	

Subcatchment E DA: Ext. Drainage Area

Runoff Area=19,561 sf Runoff Volume=0 cf Runoff Depth=0.00" WQ Rainfall=1.25" Flow Length=191' Slope=0.0105 '/' Tc=13.1 min NJ DEP 2-hr

46

Flow (cfs)

POST-DEVELOPMENT RUNOFF

Rainfall Events Listing (selected events)

Printed 3/30/2023 Page 2

4	ω	2	_		Event#
WQ	100 Year Storm	10 Year Storm	2 Year Storm	Name	Event
NJ DEP 2-hr	NOAA 24-hr	NOAA 24-hr	NOAA 24-hr		Storm Type
	ဂ	ဂ	ဂ		Curve
Default	Default	Default	Default		Mode
2.00	24.00	24.00	24.00	(hours)	Duration
-	_	-	-		B/B
1.25	8.92	5.17	3.32	(inches)	Depth
2	N	2	2		AMC

Area Listing (selected nodes)

	P
	rinted
Page 3	3/30/2023

19,561	14,040	5,521	(sq-ft)	Area
81	98	39		CN
TOTAL AREA	Paved parking, HSG A - Gravel (P DA I)	>75% Grass cover, Good, HSG A (P DA P)	(subcatchment-numbers)	Description

Soil Listing (selected nodes)

Printed 3/30/2023 Page 4

19,561	0	0	0	0	19,561	(sq-ft)	Area
	Other	HSG D	HSG C	HSG B	HSG A	Group	Soil
TOTAL AREA					P DA I, P DA P	Numbers	Subcatchment

Printed 3/30/2023 Page 5

Ground Covers (selected nodes)

o 0	0	HSG-B (sq-ft)
o 0	0	HSG-C (sq-ft)
0 0	0	HSG-D (sq-ft)
o o	0	Other (sq-ft)
14,040 19,561	5,521	Total (sq-ft)
cover, Good Paved parking TOTAL AREA	>75% Grass	Total Ground sq-ft) Cover

14,040 **19,561**

HSG-A (sq-ft)

5,521

Rt 83 Storage Keith

Prepared by Engineering Design Associates

HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

Time span=0.00-46.00 hrs, dt=0.05 hrs, 921 points
Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP DA I: Prop. Drainage Runoff Area=14,040 sf 100.00% Impervious Runoff Depth=3.09"
Flow Length=161' Slope=0.0100'/ Tc=1.7 min CN=98 Runoff=1.20 cfs 3,612 cf

SubcatchmentP DA P: Prop. Drainage Area - Runoff Area=5,521 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=25' Slope=0.1000'/ Tc=2.4 min CN=39 Runoff=0.00 cfs 1 cf

Pond IB: infiltration Basin

Peak Elev=15.74' Storage=777 cf Inflow=1.20 cfs 3,613 cf Outflow=0.25 cfs 3,613 cf

Total Runoff Area = 19,561 sf Runoff Volume = 3,613 cf Average Runoff Depth = 2.22"

28.22% Pervious = 5,521 sf 71.78% Impervious = 14,040 sf

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

Summary for Subcatchment P DA I: Prop. Drainage Area - Imp.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.20 cfs @ 12.08 hrs, Volume= Routed to Pond IB : infiltration Basin

3,612 cf, Depth= 3.09"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2 Year Storm Rainfall=3.32"

			Total	161 Total	1.7	
Shallow Concentrated Flow, Paved Kv= 20.3 fps		2.03	126 0.0100	126	1.0	
Sheet Flow, Pavement Smooth surfaces n= 0.011 P2= 3.31"	1	0.86	35 0.0100	35	0.7	
(cfs)	(c	(ft/sec) (cfs)	(ft/ft)	(feet)	(min)	
		Volocit	Signo	- ength	7	
us Area	mperviou	100.00% Impervious Area	_	14,040		
98 Paved parking, HSG A - Gravel	king, HS	aved par	98 F	14,040	*	
	3	Description	CN	Area (sf)	_	

Subcatchment P DA I: Prop. Drainage Area - Imp.

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

Summary for Subcatchment P DA P: Prop. Drainage Area - Perv.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.00 cfs @ 23.98 hrs, Volume= Routed to Pond IB : infiltration Basin

1 cf, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2 Year Storm Rainfall=3.32"

2.4 25 0.1000 0.17 Sheet Flow, Grass: Dense	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	5,521 100.00% Pervious Area	5,521 39 >75% Grass cover, Good, HSG A	Area (sf) CN Description
Sheet Flow, Grass: Dense n= 0.240 P2= 3.31"	tion		A	

Subcatchment P DA P: Prop. Drainage Area - Perv.

Rt 83 Storage Keith

Prepared by Engineering Design Associates HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

LLC

Summary for Pond IB: infiltration Basin

 Inflow Area =
 19,561 sf, 71.78% Impervious, Inflow Depth = 2.22" for 2 Year Storm event Inflow =

 Inflow =
 1.20 cfs @ 12.08 hrs, Volume=
 3,613 cf

 Outflow =
 0.25 cfs @ 12.37 hrs, Volume=
 3,613 cf

 Atten= 79%, Lag= 16.9 min Discarded =
 0.25 cfs @ 12.37 hrs, Volume=
 3,613 cf

Discarded = 0.25 cfs @ 12.37 hrs, Volume= 3,613 cf

Routing by Stor-Ind method, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs

Peak Elev= 15.74' @ 12.37 hrs Surf.Area= 3,342 sf Storage= 777 cf

Plug-Flow detention time= 17.6 min calculated for 3,609 cf (100% of inflow) Center-of-Mass det. time= 17.6 min (771.6 - 754.0)

Volume Invert Avail.Storage Storage Description
#1 15.50' 5,549 cf Custom Stage Data (Prismatic)Listed below (Recalc)

 Elevation
 Surf.Area
 Inc.Store
 Cum.Store

 (feet)
 (sq-ft)
 (cubic-feet)
 (cubic-feet)

 15.50
 3,175
 0
 0

 17.00
 4,223
 5,549
 5,549

Device Routing Invert Outlet Devices
#1 Discarded 15.50' 3.000 in/hr Exfiltration over Surface area
Conductivity to Groundwater Elevation = 13.00'

Discarded OutFlow Max=0.25 cfs @ 12.37 hrs HW=15.74' (Free Discharge) —1=Exfiltration (Controls 0.25 cfs)

NOAA 24-hr C 2 Year Storm Rainfall=3.32" Printed 3/30/2023

Page 10

Flow (cfs)

III Inflow
III Discarded

Rt 83 Storage Keith

NOAA 24-hr C 10 Year Storm Rainfall=5.17" Printed 3/30/2023

Page 11

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

SubcatchmentP DA I: Prop. Drainage Runoff Area=14,040 sf 100.00% Impervious Runoff Depth=4.93"

Flow Length=161' Slope=0.0100'/ Tc=1.7 min CN=98 Runoff=1.88 cfs 5,772 cf Time span=0.00-46.00 hrs, dt=0.05 hrs, 921 points
Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP DA P: Prop. Drainage Area - Runoff Area=5,521 sf 0.00% Impervious Runoff Depth=0.24"

Flow Length=25' Slope=0.1000 '/ Tc=2.4 min CN=39 Runoff=0.01 cfs 108 cf

Pond IB: infiltration Basin

Peak Elev=15.97' Storage=1,583 cf Inflow=1.88 cfs 5,880 cf
Outflow=0.29 cfs 5,880 cf

Total Runoff Area = 19,561 sf Runoff Volume = 5,880 cf Average Runoff Depth = 3.61"

28.22% Pervious = 5,521 sf 71.78% Impervious = 14,040 sf

NOAA 24-hr C 10 Year Storm Rainfall=5.17" Printed 3/30/2023

Summary for Subcatchment P DA I: Prop. Drainage Area - Imp.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.88 cfs @ 12.08 hrs, Volume= Routed to Pond IB : infiltration Basin

5,772 cf, Depth= 4.93"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10 Year Storm Rainfall=5.17"

			Total	1.7 161 Total	1.7
Shallow Concentrated Flow, Paved Kv= 20.3 fps		2.03	126 0.0100	126	1.0
Smooth surfaces n= 0.011 P2= 3.31"					<u>.</u>
Sheet Flow Davement		0 86	35 0.0100	3	0.7
	(cfs)	(ft/sec)	(ft/ft)		(min)
ity Description	Velocity Capacity	Velocity	Slope	_	Тc
s Area	npervious	100.00% Impervious Area	1	14,040	
98 Paved parking, HSG A - Gravel	ing, HSG	aved park	98 F	14,040	*
		CN Description	CN	Area (sf)	

Subcatchment P DA I: Prop. Drainage Area - Imp.

Hydrograph

2

Flow (cfs)

0

4

0

ö

12

14 16

28

3

32

4

36

38

40 42

NOAA 24-hr C 10 Year Storm Rainfall=5.17" Printed 3/30/2023

Summary for Subcatchment P DA P: Prop. Drainage Area - Perv.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.01 cfs @ 12.50 hrs, Volume= Routed to Pond IB : infiltration Basin

108 cf, Depth= 0.24"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10 Year Storm Rainfall=5.17"

2.4	(min)			A	
25	Length (feet)	5,521	5,521	Area (sf)	
25 0.1000	Slope (ft/ft)	. 1	39 >	CN	
0.17	Veloci (ft/se	00.00% Pe	75% Grass	Description	
	ty Capacity c) (cfs)	100.00% Pervious Area	s cover, Go		
Sheet Flow, Grass: Dense n= 0.240 P2= 3.31"	Description	20	39 >75% Grass cover, Good, HSG A		
n= 0.240					
P2= 3.31"					
			2		

Subcatchment P DA P: Prop. Drainage Area - Perv.

Rt 83 Storage Keith

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 10 Year Storm Rainfall=5.17" Printed 3/30/2023

Page 14

Summary for Pond IB: infiltration Basin

Inflow Area = Inflow = Outflow = Discarded =

19,561 sf, 71.78% Impervious, Inflow Depth = 3.61" for 10 Year Storm event
1.88 cfs @ 12.08 hrs, Volume= 5,880 cf
0.29 cfs @ 12.54 hrs, Volume= 5,880 cf, Atten= 85%, Lag= 27.4 min
0.29 cfs @ 12.54 hrs, Volume= 5,880 cf

Routing by Stor-Ind method, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 15.97' @ 12.54 hrs Surf.Area= 3,506 sf Storage= 1,583 cf

Plug-Flow detention time= 34.6 min calculated for 5,874 cf (100% of inflow) Center-of-Mass det. time= 34.6 min (784.7 - 750.1)

Volume Elevation (feet) 15.50 17.00 15.50' Invert Surf.Area (sq-ft) 3,175 4,223 Avail Storage Storage Description 5,549 cf Custom Stage Data (Prismatic)Listed below (Recalc) Inc.Store (cubic-feet) 0 5,549 Cum.Store (cubic-feet) 5,549

Device #1 Discarded Routing 15.50 Invert Outlet Devices 3.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 13.00'

Discarded OutFlow Max=0.29 cfs @ 12.54 hrs HW=15.97' (Free Discharge) —1=Exfiltration (Controls 0.29 cfs)

NOAA 24-hr C 10 Year Storm Rainfall=5.17"
Printed 3/30/2023
e Solutions LLC
Page 15

NOAA 24-hr C 100 Year Storm Rainfall=8.92" Printed 3/30/2023

Page 16

Rt 83 Storage Keith

NOAA 24-hr C
Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

Time span=0.00-46.00 hrs, dt=0.05 hrs, 921 points
Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP DA I: Prop. Drainage Runoff Area=14,040 sf 100.00% Impervious Runoff Depth=8.68" Flow Length=161' Slope=0.0100'/' Tc=1.7 min CN=98 Runoff=3.26 cfs 10,155 cf

SubcatchmentP DA P: Prop. Drainage Area - Runoff Area=5,521 sf 0.00% Impervious Runoff Depth=1.57" Flow Length=25' Slope=0.1000 '/' Tc=2.4 min CN=39 Runoff=0.22 cfs 720 cf

Pond IB: infiltration Basin

Peak Elev=16.54' Storage=3,665 cf Inflow=3.46 cfs 10,875 cf Outflow=0.37 cfs 10,875 cf

Total Runoff Area = 19,561 sf Runoff Volume = 10,875 cf Average Runoff Depth = 6.67"

28.22% Pervious = 5,521 sf 71.78% Impervious = 14,040 sf

Rt 83 Storage Keith

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 100 Year Storm Rainfall=8.92" Printed 3/30/2023

Summary for Subcatchment P DA I: Prop. Drainage Area - Imp.

[49] Hint: Tc<2dt may require smaller dt

Runoff Inoff = 3.26 cfs @ 12.08 hrs, Volume= Routed to Pond IB: infiltration Basin

10,155 cf, Depth= 8.68"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100 Year Storm Rainfall=8.92"

1.7 161 Total	1.0 126 0.0100 2	0.7 35 0.0100 0		Tc Lenath Slope Velocity	14,040 100.00	* 14,040 98 Paved	Area (sf) CN Description
	2.03 Shallow Concentrated Flow, Paved Ky= 20.3 fps	0.86 Sheet Flow, Pavement	(cfs)	city Capacity Description	100.00% Impervious Area	98 Paved parking, HSG A - Gravel	tion
	Flow,	044					

Subcatchment P DA I: Prop. Drainage Area - Imp.

Hydrograph

3.26 cfs 100 Year Storm Rainfall=8.92" Runoff Volume=10,155 cf Runoff Area=14,040 sf Runoff Depth=8.68" Flow Length=161' Slope=0.0100 '/' NOAA 24-hr C Tc=1.7 min CN=98

Flow (cfs)

۵-

ಕ

28

30

32

3

36

38

8 42

44 46

w

Rt 83 Storage Keith

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 100 Year Storm Rainfall=8.92" Printed 3/30/2023

Summary for Subcatchment P DA P: Prop. Drainage Area - Perv.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.22 cfs @ 12.11 hrs, Volume= Routed to Pond IB: infiltration Basin

720 cf, Depth= 1.57"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100 Year Storm Rainfall=8.92"

	\	Area (sf) 5,521 5,521	39 X	Description >75% Grass cover, Good 100.00% Pervious Area	s cover, Go ervious Are	CN Description 39 >75% Grass cover, Good, HSG A 100.00% Pervious Area			
		9					•		
	ፘ	Length	Slope	Velocity	Capacity	Description			
2	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.4	25	25 0.1000	0.17		Sheet Flow,		134	
						Grass: Dense n= 0.240 P2= 3.31"	n= 0.240	P2= 3.31"	

Subcatchment P DA P: Prop. Drainage Area - Perv.

NOAA 24-hr C 100 Year Storm Rainfall=8.92" Printed 3/30/2023

Page 19

Summary for Pond IB: infiltration Basin

Inflow Area = Inflow = Outflow = Discarded = 19,561 sf, 71.78% Impervious, Inflow Depth = 6.67" for 100 Year Storm ev 3.46 cfs @ 12.09 hrs, Volume= 10,875 cf 0.37 cfs @ 12.78 hrs, Volume= 10,875 cf, Atten= 89%, Lag= 41.4 min 0.37 cfs @ 12.78 hrs, Volume= 10,875 cf for 100 Year Storm event

Routing by Stor-Ind method, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 16.54' @ 12.78 hrs Surf.Area= 3,899 sf Storage= 3,665 cf

Plug-Flow detention time= 74.6 min calculated for 10,864 cf (100% of inflow) Center-of-Mass det. time= 74.6 min (823.0 - 748.4)

#1 Disc	Device Routing	15.50 17.00	Elevation (feet)	类	Volume
Discarded 15.50		3,175 4,223	Surf.Area (sq-ft)	15.50' 5,	Invert Avail.St
3.000 in/hr Exfi	Invert Outlet Devices	0 5,549	Inc.Store (cubic-feet)	549 cf Custom S	Avail.Storage Storage Description
15.50' 3.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 13.00'		0 5,549	Cum.Store (cubic-feet)	5,549 cf Custom Stage Data (Prismatic)Listed below (Recalc)	escription

Discarded OutFlow Max=0.37 cfs @ 12.78 hrs HW=16.54' (Free Discharge) —1=Exfiltration (Controls 0.37 cfs)

NOAA 24-hr C 100 Year Storm Rainfall=8.92"
Printed 3/30/2023
Page 20

Flow (cfs)

w

III Inflow
Discarded

NJ DEP 2-hr WQ Rainfall=1.25"

Printed 3/30/2023 Page 21

Time span=0.00-46.00 hrs, dt=0.05 hrs, 921 points
Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP DA I: Prop. Drainage Runoff Area=14,040 sf 100.00% Impervious Runoff Depth=1.03" Flow Length=161' Slope=0.0100'/' Tc=1.7 min CN=98 Runoff=0.96 cfs 1,210 cf

SubcatchmentP DA P: Prop. Drainage Area - Runoff Area=5,521 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=25' Slope=0.1000 / Tc=2.4 min CN=39 Runoff=0.00 cfs 0 cf

Pond IB: infiltration Basin Peak Elev=15.66' Storage=533 cf Inflow=0.96 cfs 1,210 cf Outflow=0.24 cfs 1,210 cf

Total Runoff Area = 19,561 sf Runoff Volume = 1,210 cf Average Runoff Depth = 0.74"

28.22% Pervious = 5,521 sf 71.78% Impervious = 14,040 sf

NJ DEP 2-hr WQ Rainfall=1.25" Printed 3/30/2023

Page 22

Summary for Subcatchment P DA I: Prop. Drainage Area - Imp.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.96 cfs @ 1.05 hrs, Volume= Routed to Pond IB : infiltration Basin

1,210 cf, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NJ DEP 2-hr WQ Rainfall=1.25"

	1				*	1	
1.7	1.0	0.7	(min)	7		≥	
161	126	35	(feet)	14,040	14,040	Area (sf)	
161 Total	126 0.0100	35 0.0100	(ft/ft)	2	98 F	CN	
	2.03	0.86	(ft/sec)	00.00% ln	aved park	Description	
			Capacity (cfs)		98 Paved parking, HSG A - Gravel		
	Smooth surfaces n= 0.011 P2= 3.31" Shallow Concentrated Flow, Paved Kv= 20.3 fps	Sheet Flow, Pavement	Description	rea	- Gravel		

Subcatchment P DA I: Prop. Drainage Area - Imp.

NJ DEP 2-hr WQ Rainfall=1.25" Printed 3/30/2023

Summary for Subcatchment P DA P: Prop. Drainage Area - Perv.

[49] Hint: Tc<2dt may require smaller dt [45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= Routed to Pond IB : infiltration Basin

0 cf, Depth= 0.00"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NJ DEP 2-hr WQ Rainfall=1.25"

2.4 25	Tc Length (min) (feet)	5,521	5,521	Area (sf)
25 0.1000	Slope (ft/ft)		39	Ω _
0.17	Velocity (ft/sec)	100.00% Pervious Area	>75% Gras	Description
	Capacity (cfs)	ervious Are	s cover, Go	
Sheet Flow, Grass: Dense n= 0.240 P2= 3.31"	Description	α .	39 >75% Grass cover, Good, HSG A	
n= 0.240				
P2= 3.31"				

Subcatchment P DA P: Prop. Drainage Area - Perv.

NJ DEP 2-hr WQ Rainfall=1.25" Printed 3/30/2023

Page 24

Summary for Pond IB: infiltration Basin

Inflow Area = Inflow = Outflow = Discarded = 19,561 sf, 71.78% Impervious, Inflow Depth = 0.74" for WQ event
0.96 cfs @ 1.05 hrs, Volume= 1,210 cf
0.24 cfs @ 1.25 hrs, Volume= 1,210 cf, Atten= 75%, Lag= 12.0 min
0.24 cfs @ 1.25 hrs, Volume= 1,210 cf

Routing by Stor-Ind method, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 15.66' @ 1.25 hrs Surf.Area= 3,290 sf Storage= 533 cf

Plug-Flow detention time= 20.8 min calculated for 1,209 cf (100% of inflow) Center-of-Mass det. time= 20.8 min (88.1 - 67.3)

#1 Disc	Device Routing	15.50 17.00	Elevation (feet)	#	Volume
Discarded 15.50		3,175 4,223	Surf.Area (sq-ft)	15.50' 5,	Invert Avail.S
3.000 in/hr Exf	Invert Outlet Devices	0 5,549	Inc.Store (cubic-feet)	549 cf Custom \$	Avail.Storage Storage Description
15.50' 3.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 13.00'		0 5,549	Cum.Store (cubic-feet)	5,549 cf Custom Stage Data (Prismatic)Listed below (Recalc)	escription

Discarded OutFlow Max=0.24 cfs @ 1.25 hrs HW=15.66' (Free Discharge) —1=Exfiltration (Controls 0.24 cfs)

Rt 83 Storage Keith

Prepared by Engineering Design Associates
Printed 3/30/2023

HydroCAD® 10:20-2c sin 01171 © 2021 HydroCAD Software Solutions LLC

Pond IB: infiltration Basin

Hydrograph

Inflow Area=19,561 sf

Peak Elev=15.66'
Storage=533 cf

28 30 32

34 36 38

EMERGENCY SPILLWAY CALCULATIONS

21-3

Return to TOC

	Rainfall I	Events I	Listing	Rainfall Events Listing (selected events)	events	<u>s</u>	
Event	Storm Type C	Curve	Mode	Duration	B/B	Depth	_
Name				(hours)		(inches)	

Even#

Duration (hours)

(inches) Depth

AMC

25 Year Storm NOAA 24-hr

C

Default

24.00

6.48

	utions LLC
--	------------

Printed 3/30/2023 Page 3

Area Listing (selected nodes)

19,561	14,040	5,521	(sq-ft)	Area
<u>%</u>	98	39		2
TOTAL AREA	Paved parking, HSG A - Gravel (P DA I)	>75% Grass cover, Good, HSG A (P DA P)	(subcatchment-numbers)	Description

Soil Listing (selected nodes)

Printed 3/30/2023 Page 4

19,561	0	0	0	0	19,561	(sq-ft)	Area
	Other	HSG D	HSG C	HSG B	HSG A	Group	OOI
TOTAL AREA					P DA I, P DA P	Numbers	Subcatchment

HSG-A

HSG-B (sq-ft)

HSG-C (sq-ft)

5,521 (sq-ft)

0

0

14,040 **19,561**

00

o 0

Rt 83 Storage Keith
Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

Printed 3/30/2023 Page 5

Ground Covers (selected nodes)

HSG-D (sq-ft) 0 00 Other (sq-ft) 0 00 14,040 **19,561** (sq-ft) 5,521 Total Paved parking
TOTAL AREA >75% Grass cover, Good Cover Ground

NOAA 24-hr C 25 Year Storm Rainfall=6.48" Printed 3/30/2023

Page 6

Rt 83 Storage Keith

Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

Time span=0.00-46.00 hrs, dt=0.05 hrs, 921 points
Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP DA I: Prop. Drainage Runoff Area=14,040 sf 100.00% Impervious Runoff Depth=6.24"

Flow Length=161' Slope=0.0100'/' Tc=1.7 min CN=98 Runoff=2.37 cfs 7,302 cf

SubcatchmentP DA P: Prop. Drainage Area - Runoff Area=5,521 sf 0.00% Impervious Runoff Depth=0.59" Flow Length=25' Slope=0.1000 /' Tc=2.4 min CN=39 Runoff=0.04 cfs 272 cf Pond IB ES: Infiltration Basin Emergency

Total Runoff Area = 19,561 sf Runoff Volume = 7,575 cf Average Runoff Depth = 4.65" 28.22% Pervious = 5,521 sf 71.78% Impervious = 14,040 sf Peak Elev=16.98' Storage=5,476 cf Inflow=2.39 cfs 7,575 cf Outflow=1.74 cfs 7,575 cf

NOAA 24-hr C 25 Year Storm Rainfall=6.48" Printed 3/30/2023

Summary for Subcatchment P DA I: Prop. Drainage Area - Imp.

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.37 cfs @ 12.08 hrs, Volume= 7, Routed to Pond IB ES : Infiltration Basin Emergency Spillway

7,302 cf, Depth= 6.24"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 25 Year Storm Rainfall=6.48"

	1		i			*	ı
1.7	1.0	0.7	(min)	건			>
161 Total		35	(feet)	Length	14,040	14,040	Area (sf)
Total	126 0.0100	35 0.0100	(ft/ft)	Slope		98	S
	2.03	0.86	(ft/sec)	Velocity	100.00% Impervious Area	Paved parking, HSG A - Grave	Description
			(cfs)	Capacity	npervious A	ing, HSG A	
	Smooth surfaces n= 0.011 P2= 3.31" Shallow Concentrated Flow, Paved Kv= 20.3 fps	Sheet Flow, Pavement	- :	Description	rea	- Gravel	

Subcatchment P DA I: Prop. Drainage Area - Imp.

NOAA 24-hr C 25 Year Storm Rainfall=6.48" Printed 3/30/2023

Rt 83 Storage Keith

NOAA 24-hr
Prepared by Engineering Design Associates
HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

Summary for Subcatchment P DA P: Prop. Drainage Area - Perv.

[49] Hint: Tc<2dt may require smaller dt

Inoff = 0.04 cfs @ 12.15 hrs, Volume= Routed to Pond IB ES : Infiltration Basin Emergency Spillway

272 cf, Depth= 0.59"

Runoff by SCS TR-20 method, UH=Delmarva, Weighted-Q, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs NOAA 24-hr C 25 Year Storm Rainfall=6.48"

) TT			
2.4	ᇍ식			₽
25	Length (feet)	5,521	5,521	Area (sf)
25 0.1000	Slope (ft/ft)	_	39 >	CN
0.17	Velocity (ft/sec)	100.00% Pervious Area	75% Grass	Description
	Capacity (cfs)	rvious Area	cover, Go	
Sheet Flow, Grass: Dense n= 0.240 P2= 3.31"	Description		39 >75% Grass cover, Good, HSG A	
n= 0.240				
P2= 3.31"				

Subcatchment P DA P: Prop. Drainage Area - Perv.

Rt 83 Storage Keith

Prepared by Engineering Design Associates

HydroCAD® 10.20-2c s/n 01171 © 2021 HydroCAD Software Solutions LLC

NOAA 24-hr C 25 Year Storm Rainfall=6.48" Printed 3/30/2023

Summary for Pond IB ES: Infiltration Basin Emergency Spillway

Inflow Area = Inflow = Outflow = Primary = 19,561 sf, 71.78% Impervious, Inflow Depth = 4.65" for 25 Year Storm ev 2.39 cfs @ 12.09 hrs, Volume= 7,575 cf 1.74 cfs @ 12.14 hrs, Volume= 7,575 cf 1.74 cfs @ 12.14 hrs, Volume= 7,575 cf for 25 Year Storm event

Routing by Stor-Ind method, Time Span= 0.00-46.00 hrs, dt= 0.05 hrs
Starting Elev= 16.75' Surf.Area= 4,048 sf Storage= 4,515 cf
Peak Elev= 16.98' @ 12.14 hrs Surf.Area= 4,211 sf Storage= 5,476 cf (961 cf above start)

Plug-Flow detention time= 367.9 min calculated for 3,060 cf (40% of inflow) Center-of-Mass det. time= 21.5 min (770.7 - 749.2)

15.50 17.00	(feet)	Elevation	#1	Volume
3,175 4,223	(sq-ft)	Surf.Area	15.50'	Invert Av
5,549	(Q	Inc.Store	5,549 cf Custo	ail.Storage S
	_	1	ustom Stage D	Storage Descript
5,549	cubic-feet)	Cum.Store	om Stage Data (Prismatic)Listed below (Recalc)	tion
			alc)	

Device #1 Primary Routing 16.75 Invert 5.0' long + 4.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.32 **Outlet Devices**

Primary OutFlow Max=1.72 cfs @ 12.14 hrs HW=16.98' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 1.72 cfs @ 1.25 fps)

NOAA 24-hr C 25 Year Storm Rainfall=6.48" Printed 3/30/2023 e Solutions LLC Page 10

Point of Discharge - Methods for Achieving Stability

No well-defined waterway below the point of discharge:

Stability cannot be achieved by the allowable velocity method since there can be no determination where the runoff will concentrate. A land-form not previously subjected to concentrated water flow will become unstable.

Stability can be achieved by one of the following alternatives:

- Retain pre-existing runoff characteristics. Do not increase the amount and rate of runoff for the development and do not concentrate flows.
- b. Where there is no well defined channel, no sandy condition, no trees or brush to substantially concentrate the flows and it can be reasonably assumed that the flow will disperse over a broad area. The combinations of slopes and soils in table 21-1 and the following criteria are considered stable for flows of 10cfs or less for a 25 year, 24hr design storm.

Table 21-1 Non-Erosive Velocities for Point Discharges

harge I Vego	Graded loam to gravel 8.0			Silt loam, loam 2.5		Sands 1.8	Maximum Slope (%)	Soil Type Perennial, Natural Vegetation	for Various Soils
-----------------	---------------------------	--	--	---------------------	--	-----------	-------------------	---	-------------------

Stability Criteria (in conjunction with table 21-1)

- The maximum discharge rate shall be 10 cfs or less for the twenty-five (25) year storm.
- Multiple outlets may be utilized to reduce individual outlet flow rates to levels below the thresholds noted above. Outlets should be spaced no closer than 50 ft horizontally to avoid re-mixing of flows
- Flow over the outlet area shall be less than 0.5 cfs/ft. Designers shall not design excessive widths which will cause flows to concentrate.

E:

::

- iv. Conduit outlet protection shall be provided in accordance with that Standard and may include: flat aprons, preformed scour holes, impact basins, stilling wells, plunge pools, etc. Level spreaders are not an acceptable design.
- v. Topography shows broad uniform outlet area where flows will not concentrate.

SEDIMENT BAY CALCULATIONS

.

RIP-RAP SLOPE PROTECTION

RIP RAP SLOPE PROTECTION DESIGN

Keith Storage 9826 Project: EDA#: Date:

3/30/2023

FLUMES WITH TRAPEZOIDAL AND RECTANGULAR SECTIONS

Bottom Widths And Drainage Area For Trapezoidal Flumes With Flow Depths Equal to 10 Inches	Drainage Area (acres)	7 10 13 16 19 24
Bottom Widths And Trapezoidal Flumes W to 10	Bottom Width (feet)	2 4 6 8 10

Bottom Widths And Drainage Area For Rectangular Flumes With Flow Depths Equal to 10 Inches	Drainage Area (acres)	3 5 10 13 16
Bottom Widths And Rectangular Flumes W to 10	Bottom Width (feet)	2 4 6 8 10 12

 D_{50} = Particle (stone) size for which 50% of the sample is finer, in. S = Bed slope, ft./ft. (Total discharge+Bottom width) z = Flow depth, ft. q = Unit discharge, ft³/s/ft

(Bottom Width)	(Land Cover)	(Rainfall Inensity, 25 yr, 6 Min)	(Area)	(Slope)	
£		7.8 in/hr	Ac	Ft/Ft	
3 Ft	0.9	7.8	0.25 Ac	0.25 Ft/Ft	
B =	= 0	11	ii ii	≥ S	
				0,	

For channel stopes between 10% and 40%: $D_{30} = [q \ (5)^{0.26}/3.93(10)^{2}]^{11.89}$ $z = [n(q)/1.486(5)^{0.30}]^{3.3}$ where $n = 0.047(D_{20}S)^{0.17}$	Largest Area	3 Ft		7.8 in/hr	0.25 Ac	0.25 Ft/Ft	1.76 Cfs	0.59 Cfs/Ft	2.73 in	0.04	0.13 Ft	USE	3 in	6 in	2 in	3 Ft	7 Ft
For channel sto $D_{30} = [q (S)$ $z = [n(q)/1].$ where $n = 1$	Rip Rap Slope #	8=	= 0		ii Ii	S	6	=b	= 020 =	= =	= 7		D20 =	Thickness =	#	8=	=

GROUNDWATER

RECHARGE ANALYSIS

ilew Jerse Groundwa		Annual Groundwater	Recharge A	nalysis	(based on (SSR-32)			Project Name:	Rt 83 Stora	ge - Keith				
techarge preadshe fersion 2.0 lovember :		Select Township J	Average Annual P (in)	Climatic Factor					Description:		roundwater Recharge				
anaalii(be)	2003	CAPE_MAY CO., DENNIS TWP	43.2	1.33					Analysis Date:	03/27/2	3				
		Pre-Developed C	onditions						Post-Develope	d Conditions					
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)			
1	0.14646	Woods	Downer	11.6	6,189		1	0.12674	Open space	Downer	12,5	5,74			
2	0.30259	Open space	Downer	12.5	13,719		2	0.32231	Impervious areas	Downer	0.0	5,74			
3	0						3	government of			0.0				
4							4	0			<u> </u>				
5	- 6						5	0							
6	- 0						6	0			1				
7	0						7	0							
8	0						8	0							
9							9	0							
10				-			10	0							
12							11	0							
13				 			12	0							
14							13	0							
15							14	0							
- 10				Total	Total		15	0							
「otal =	0.4			Annual Recharge (in)	Annual Recharge (cu-ft)		Total =	0.4			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)			
				12.2	19,909		Annual I	Recharge	Requirements Calculat	ion ↓	3,5	5,746			
ocedure t	o fill the P	re-Development and Post-Development	Conditions Tables			% of Pre-Dev	veloped A	nnual Rec	harge to Preserve ≂	100%	Total Impervious Area (sq.ft)	14,04			
		enter the area, then select TR-55 Land Cover, then s							al Recharge Deficit=	14,162	(cubic feet)				
		't leave blank rows (with A=0) in between your segme					Control of the Contro		ameters Calculations (are						
		lons. For Impervious areas outside of standard lots so		the Land Cover.		RWC= #N	1	in)	DRWC=	#N/A	(in)				
type for imp	ervious erea	s are only required if an infiltration facility will be built	within these areas.			ERWC = #N	/A	in)	EDRWC=	#N/A	(in)				

Project Name Rt 83 Storage - Keith		Description 9826 - Groundwater Recharge			00/07/00			· LID Type					
Recharge BMP Input P			Ouriuwai		03/27/23		Infiltration B						
Parameter	Symbol	Value	Hate	Root Zone Water ca				Recharge Design Pa	arameters				
<u>, Laiametei</u>	Symbol	value	Unit	<u>Parameter</u>	Symbol	Value	<u>Unit</u>	<u>Parameter</u>	Symbol	<u>Value</u>	Unit		
BMP Area	ABMP	3200.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	0.64	in	Inches of Runoff to capture	Qdesign	0.21	in		
BMP Effective Depth, this is the design variable Upper level of the BMP	dBMP	0.2	în	ERWC Modified to consider dEXC	EDRWC	0.02	in	Inches of Rainfall to capture	Pdesign	0.28	in		
surface (negative if above ground)	₫BMPu	12.0	in	Empty Portion of RWC under Infilt.	RERWC	0.01	in	Recharge Provided Avg. over Imp. Area		12.1	in		
Depth of lower surface of BMP, must be>=dBMPu	dEXC	27.0	in					Runoff Captured Avg. over imp. Area		12.9	in		
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	2	unitless										
548	2,000		- 10	BMP Calculated Size	Parameter	's		CALCULATION C	HECK MES	SACES	_		
				ABMP/Aimp	Aratio	0.82	unitless	Volume Balance->		JA O DO			
				BMP Volume	VBMP	66	cu.ft	dBMP Check>					
Parameters from Annua	l Recharg	e Worksheet		System Performance	Calculated			dEXC Check>	OK				
Post-D Deficit Recharge or desired recharge volume)	Vdef	3,936	cu.ft	Annual BMP Recharge Volume		3,936		BMP Location>					
Post-D Impervious Area for target Impervious Area)	Aimp	3,912	sq.ft	Avg BMP Recharge Efficiency		93.7%	Represents % Infiltration Recharged	OTHER NOTES					
Root Zone Water Capacity	RWC	1.91	in	%Rainfall became Runoff		77.4%	%	Pdesign is accurate only after	RMP dimensions	are undeted t	o make rech volume= deficit volume		
RWC Modified to onsider dEXC	DRWC	0.05	in	%Runoff Infiltrated		38.5%	%	1			o make rech votume= deficit volume P are ignored in these calculations.		
Climatic Factor	C-factor	1.33	no units	%Runoff Recharged		10.1%	1 %	10			rh for BMP to empty in less than 3 d		
verage Annual P	Pavg	43.2	in	%Rainfall Recharged		7.8%	1%	1					
lecharge Requirement	dr	3.4	in				dy.		on soloci milheroid	vis siess RV	VC will be minimal but not zero as d		

Recharge Requirement or 3.4 in the soil type and a shallow root zone for this Land Cover allowing consideration of lateral flow and other losses. How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and total proposed impervious area is available to the BMP. To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

GROUNDWATER MOUNDING

GROUNDWATER RECHARGE MOUNDING ANALYSIS BLOCK 261 LOT 15.02 DENNIS TOWNSHIP, CAPE MAY COUNTY, NJ STORMWATER BASIN

EDA 9826

*Basin m		3 47		6. I	5. I	4.	ω	2.	4
Seasonal High Water Elevation = 13.00 Max Ground Water Mounding Height (SHWT + Δh) = 15.465* Bottom of Basin Elevation = 15.50 *Basin mounding modified to adjusted recharge rate and duration of infiltration as per Chapter 13 of the	Width Length Duration of infiltration Thickness of Saturation Zone	Recharge Rate Specific yield Horizontal Hydraulic Conductivity		Duration of infiltration Period (days)	Initial Thickness of Saturated Zone	Basin Dimensions	Horizontal Hydraulic Conductivity (ft/day)	Specific yield	Recharge Rate (in./hr)
[WT +	3	₹		11	11	П	II	lt .	II
Δh) n of infiltratio		= 3 in/hr = 0.15	t = (10,554)	(100-yr storn (Infiltration	10'	50' x 50' X = 25 Y = 25	15 in/hr	0.15	3 in/hr (K-4
= 13.00 = 15.46; = 15.50 n as per Chapter 1	25° 25° 13.19 Hrs 10.00°		$t = (10,554 \times 12)/(3200 \times 3) = 13.19 \text{ Hrs}$	(100-yr storm volume, CF) x (12 in/ft) (Infiltration Area, SF) x (Recharge Ra					3 in/hr (K-4, with factor of safety = 2)
13.00 15.465* 15.50 apter 13 of the		·)= 13.19 Hrs	(100-yr storm volume, CF) x (12 in/ft) (Infiltration Area, SF) x (Recharge Rate, in/hr)					safety = 2)

*Basin mounding modified to adjusted recharge rate and duration of infiltration as per Chapter 13 of the NJBMP. See table below for initial and other adjusted model values.

0.33	0.50	0.0.1	1 50	3.00	2 00	Nectarge Kate, K (in/hr)
72.00		26.38		13.19	ŀ	Duration of infiltration, t (Hrs)
2.465	4.070	7 800	1.001	7 261	(11) mg/21 Smanner	Mounding Height (Et)

Groundwater Mounding Analysis

A groundwater mounding analysis was performed in association with the proposed infiltration basin. It has been determined that at distance of 100 feet that the height or elevation of the seasonal highwater elevation will increase by 0.489 feet (6 inches) during the 100 year storm event.

This slight increase will have little impact on the basin bottom or the surrounding adjacent properties, buildings, adjacent water bodies, wetlands or subsurface structures. It has been determined that seasonal high water is at elevation 13.00. Groundwater mounding associated with the proposed basin will increase this elevation to 15.47 for the 100 year storm event at 72 hours, with an adjusted recharge rate, below the proposed basin bottom elevation of 15.50.

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

BASIN DRAIN TIME

PR00UC7 204-1 (Single Sheets) 205-1 (Padded) 28.00 Engineering Design Associates
5 Cambridge Drive
Ocean View, NJ 08230
(609)390-0332 tj . . Volunt× Ares x Rechnyl Rok 3,200 SF 10,885 K XII in 12/2 × 11 , γ, γ, 13.19 HRS CHECKED BY SCALE 5826 JOB Basin 11 CALCULATED BY_ 100 year 13.19 × BB 200 Dala 24 y/ Stein de la B DATE_ DATE \$27/23 Kell

SOILS DATA

TEST PIT #1

25"- 36" 6"- 25" 0"- 6" 36"- 120" DEPTH 10YR 8/1 White, Few, Fine & Faint 10YR 6/2 Light Brownish Gray, Fine Sand, Single Grain, Loose w/mottles of 10YR 7/6 Yellow, Loamy Sand, Subangular Blocky, Friable 10YR 6/4 Light Yellowish Brown, Sandy Loam, Subangular Blocky, Friable 10YR 4/2 Dark Grayish Brown, Sandy Loam, Subangular Blocky, Friable DESCRIPTION

Performed By: Date Performed: Depth of Groundwater: Depth of Seasonal High Water:

3/3/2023 36" 76"

Christopher J. Carey, LLA

TEST PIT #2

30"-41" 23"- 30" 5"- 19" 41"- 120" 19"- 23" 0"- 5" DEPTH 10YR 7/2 Light Gray, Fine Sand, Single Grain, Loose w/mottles of w/mottles of 10YR 7/1 Light Gray, Few, Fine & Faint 10YR 7/6 Yellow, Few, Fine & Faint 10YR 6/6 Brownish Yellow, Loamy Sand, Subangular Blocky, Friable 10YR 6/4 Light Yellowish Brown, Loamy Sand, Subangular Blocky, Friable 10YR 6/4 Light Yellowish Brown, Sandy Loam, Subangular Blocky, Friable 10YR 7/6 Yellow, Sandy Loam, Subangular Blocky, Friable 10YR 4/1 Dark Gray, Sandy Loam, Subangular Blocky, Friable DESCRIPTION

Depth of Seasonal High Water:

Performed By: Depth of Groundwater: Date Performed: 30" 63" 3/3/2023

Christopher J. Carey, LLA

TEST PIT #3

87"- 120"	36"-87"	18"- 29" 29"- 36"	0"- 6" 6"- 18"	DEPTH
10YR 7/1 Light Gray, Fine & Faint 10YR 7/1 Light Gray, Fine Sand, Single Grain, Loose w/mottles of 10YR 7/6 Yellow, Common, Medium & Distinct	10 YR 6/4 Light Yellowish Brown, Fine Sand, Single Grain, Loose w/mottles of	10YR 5/6 Yellowish Brown, Sandy Loam, Subangular Blocky, Friable	10YR 4/2 Dark Grayish Brown, Sandy Loam, Subangular Blocky, Friable 10YR 6/4 Light Yellowish Brown, Sandy Loam, Subangular Blocky, Friable	DESCRIPTION

Depth of Seasonal High Water:

Date Performed: Depth of Groundwater:

Performed By:

36" 72" 3/3/2023

Christopher J. Carey, LLA

CJC/tt Final/EDA/9826/TP1-3

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

Sample Depth 63" Soil Pit Boring Number TPH Date Collected 35/2023 Coarse Fragment Content Total W. of Sample, W.T., Grams (g) 406.9 W.C.F. g. 10.5 Wt. of Mardrial Retained on 2 nm Sieve, W.C.F. g. 10.5 Wt. of Carese Fragment (W.C.F.AV.T. x 100); 26% Temperature of Suspension, v. p. 71° Corrected Hydrometer Reading, g. R 1' 3.6 Hydrometer Reading, 2 Hrs., g. R2 5 Temperature of Suspension, v. p. 71° Corrected Hydrometer Reading, g. R 2' 1.6 W. Sand = (39.8 – 3.6)39.8 x 100 = 99.09% W. Sand = (39.8 – 3.6)39.8 x 100 = 99.09% W. Sand = (39.8 – 3.6)39.8 x 100 = 99.09% W. Clay = 1.6/39.8 x 100 = 99.09% W. Sand = (39.8 x 100 = 99.09% W. Clay = 1.6/39.8 x 100 = 99.09% W. Clay	RMEABILITY CLASS RA

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

Final\EDA...9826/K-4 Adjusted/TP1

14 14 13.

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

9. 9. 11.

13.

6.

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

-

SOIL PERMEABILITY CLASS RATING DATA MUNICIPALITY - Dennis Township
Test Number 1 Replicate Letter B
Sample Depth 60" Soil Pit Boring Number TP#2 Date Collected 3/3/2023
Coarse Fragment Content Total Wt. of Sample, W.T., Grams (g) 380 Wt. of Material Retained on 2 mm Sieve, W.C.F., g 13.4 Wt. % Coarse Fragment (W.C.F./W.T. x 100): 3.5%
Oven Dry Weight (24 Hrs., 105° C) of 40 g Air Dry Sample, g. Wt. 40
Hydrometer Calibration, Rc_4 Temperature of Suspension, °F_71°_
Hydrometer Reading - 40 Sec., g, R16 Temperature of Suspension, °F71°
Corrected Hydrometer Reading, g, R1 ¹ 2.6
Hydrometer Reading - 2 Hrs., g, R25_ Temperature of Suspension, °F71°
Corrected Hydrometer Reading, g, R2 ¹ 1.6
% Sand = $(40 - 2.6)/40 \times 100 = 93.5\%$
% Clay = $1.6/40 \times 100 = 4\%$
Sieve Analysis: (a) Oven Dry Wt. (2 Hrs., 105° C) Total Sand Fraction (Soil Retained in 0.047 mm Sieve), g 37.7 (b) Wt. of Fine Plus Very Fine Sand Fraction (Sand Passing 0.25 mm Sieve), g 36.4 (c) % Fine Plus Very Fine Sand (b/a) 96.5%
Soil Morphology (Natural Soil Samples Only): Structure of Soil Horizon Tested
Soil Permeability Class Rating (Based upon Average Textural Analysis of this Replicate and other Replicate Samples) _K-4 (Adjusted)_
I HEREBY CERTIFY THAT THE INFORMATION FURNISHED ON THIS ATTACHMENT "B" IS TRUE AND ACCURATE. I AM AWARE THAT FALSIFICATION OF DATA IS A VIOLATION OF THE WATER POLLUTION CONTROL ACT (N.J.S.A.) 58:10A-1 et seq.) AND IS SUBJECT TO PENALTIES AS PRESCRIBED IN N.J.A.C. 7:14-8.
SIGNATURE OF SOIL EVALUATOR WAY TO SIGNATURE OF PROFESSIONAL ENGINEER CHARLES NUMBER 32498

8. 8. 11. 110. 112.

6.

. 4

14.

13.

Final\EDA...9826/K-4 Adjusted/TP2

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

I HEREBY CERTIFY THAT THE INFORMATION FURNISHED ON THIS ATTACHMENT "B" IS TRUE AND ACCURATE. I AM AWARE THAT FALSIFICATION OF DATA IS A VIOLATION OF THE WATER POLLUTION CONTROL ACT (N.J.S.A.) 58:10A-1 et seq.) AND IS SUBJECT TO PENALTIES AS PRESCRIBED IN N.J.A.C. 7:14-8. SIGNATURE OF SOIL EYALUATOR DATE SIGNATURE OF PROFESSIONAL ENGINEER	Soil Morphology (Natural Soil Samples Only): Structure of Soil Horizon Tested Consistence of Soil Horizon Tested: Dry Moist Soil Permeability Class Rating (Based upon Average Textural Analysis of this Replicate and other Replicate Samples) K-4 (Adjusted)	Sieve Analysis: (a) Oven Dry Wt. (2 Hrs., 105° C) Total Sand Fraction (Soil Retained in 0.047 mm Sieve), g 34.9 (b) Wt. of Fine Plus Very Fine Sand Fraction (Sand Passing 0.25 mm Sieve), g 33.4 (c) % Fine Plus Very Fine Sand (b/a) 95.7%	% Clay = $1.6/39.8 \times 100 = 4\%$	% Sand = $(39.8 - 2.6)/39.8 \times 100 = 93.5\%$	Corrected Hydrometer Reading, g, R2 ¹ 1.6	Hydrometer Reading - 2 Hrs., g, R25 Temperature of Suspension, °F71°	Corrected Hydrometer Reading, g, R1 ¹ 2.6	Hydrometer Reading - 40 Sec., g, R1_6	Hydrometer Calibration, Rc4 Temperature of Suspension, °F71°	Oven Dry Weight (24 Hrs., 105° C) of 40 g Air Dry Sample, g. Wt. 39.8	Coarse Fragment Content Total Wt. of Sample, W.T., Grams (g) 471.1 Wt. of Material Retained on 2 mm Sieve, W.C.F., g 10 Wt. % Coarse Fragment (W.C.F./W.T. x 100); 2.1%	Sample Depth 58" Soil Pit Boring Number TP#3 Date Collected 3/3/2023	Test Number_1_ Replicate Letter_A_	SOIL PERMEABILITY CLASS RATING DATA MUNICIPALITY - Dennis Township
--	--	---	--------------------------------------	--	--	---	--	---------------------------------------	---	---	--	--	------------------------------------	--

6, 5, 4

14.

13.

CAPE MAY COUNTY DEPARTMENT OF HEALTH SEWAGE DISPOSAL SYSTEM APPLICATION - ATTACHMENT "B"

SOIL PERMEABILITY CLASS RATING DATA MUNICIPALITY - Dennis Township
Test Number_1_ Replicate Letter_B_
Sample Depth 58" Soil Pit Boring Number TP#3 Date Collected 3/3/2023
Coarse Fragment Content Total Wt. of Sample, W.T., Grams (g) 471.1 Wt. of Material Retained on 2 mm Sieve, W.C.F., g 10 Wt. % Coarse Fragment (W.C.F./W.T. x 100): 2.1%
Oven Dry Weight (24 Hrs., 105° C) of 40 g Air Dry Sample, g. Wt. 39.8
Hydrometer Calibration, Rc 4 Temperature of Suspension, °F 71°
Hydrometer Reading - 40 Sec., g, R1 6 Temperature of Suspension, °F 71°
Corrected Hydrometer Reading, g, R1 ¹ 2.6
Hydrometer Reading - 2 Hrs., g, R2 6 Temperature of Suspension, °F 71°
Corrected Hydrometer Reading, g, R2 ¹ 2.6
% Sand = $(39.8 - 2.6)/39.8 \times 100 = 93.5\%$
$\% \text{ Clay} = 2.6/39.8 \times 100 = 6.5\%$
Sieve Analysis: (a) Oven Dry Wt. (2 Hrs., 105° C) Total Sand Fraction (Soil Retained in 0.047 mm Sieve), g35.1_ (b) Wt. of Fine Plus Very Fine Sand Fraction (Sand Passing 0.25 mm Sieve), g33.1_ (c) % Fine Plus Very Fine Sand (b/a)94.3%
Soil Morphology (Natural Soil Samples Only): Structure of Soil Horizon Tested Consistence of Soil Horizon Tested: Dry Moist
Soil Permeability Class Rating (Based upon Average Textural Analysis of this Replicate and other Replicate Samples) <u>K-4 (Adjusted)</u>
I HEREBY CERTIFY THAT THE INFORMATION FURNISHED ON THIS ATTACHMENT "B" IS TRUE AND ACCURATE. I AM AWARE THAT FALSIFICATION OF DATA IS A VIOLATION OF THE WATER POLLUTION CONTROL ACT (N.J.S.A.) 58:10A-1 et seq.) AND IS SUBJECT TO PENALTIES AS PRESCRIBED IN N.J.A.C. 7:14-8.
SIGNATURE OF SOIL EVALUATOR (MMT) DATE 9/5/37 SIGNATURE OF PROFESSIONAL ENGINEER 1/CENSE NI IMBER 274.95

13.

Final\EDA...9826/K-4 Adjusted/TP3